

Peering into the Darkness: The Use of UTRS in Combating DDoS Attacks

Radu Anghel¹, Swaathi Vetrivel¹, Elsa Turcios Rodriguez¹, Kaichi Sameshima², Daisuke Makita³, Katsunari Yoshioka², Carlos Gañán¹ and **Yury Zhauniarovich¹**

¹ TU Delft, ² Yokohama National University,

³ Yokohama National University/National Institute of Information and Communications Technology

Background

- **Border Gateway Protocol (BGP)** is a routing protocol responsible for ensuring the interconnectivity of **Autonomous Systems (ASes)**
- BGP attributes are used to provide additional value-added services, e.g., Remotely Triggered Black Hole (RTBH):
- RTBH allows the victim AS to advertise an IP under attack using BGP [1]. Upon receiving this advertisement, the peers of the AS (or the community) start discarding the packets to that IP (null route, black hole)
- Unwanted Traffic Removal Service (UTRS) is a global free easy-to-join RTBH service operated by a trusted third-party (Team Cymru [2]).

1. Doughan Turk. 2004. Configuring BGP to Block Denial-of-Service Attacks. RFC3882. https://doi.org/10.17487/RFC3882

2. https://www.team-cymru.com/ddos-mitigation-services

Unwanted Traffic Removal Service

Research Questions

How extensively is UTRS used to counter DDoS attacks?

- RQ1: How many UTRS members use this service to mitigate attacks?
- RQ2: To what extent are DDoS attacks triggering mitigation attempts via UTRS?
- RQ3: To what extent can UTRS announcements be explained by amplification DDoS attacks?
- RQ4: To what extent can UTRS announcements be explained by IoT-botnet-driven DDoS attacks?

UTRS Dataset Collection

Amplification DDoS Attacks

IoT DDoS Attacks Dataset Collection

IoT DDoS Attacks Dataset Collection

Datasets (6 months)

- OUR AS collects snapshots of active UTRS-related BGP routes every 5 minutes
- Stitch entries if the same target is in the two consecutive snapshots
- AmpPot [1]
 - Honeypot that pretends to be an amplifier
 - Collects the start and end time, target IP address, source port and volume of a DRDoS attack
- IoT Milker
 - Imitates IoT bot behavior, receiving attack commands from C&C servers
 - Collects the start time, target network and port, and duration of an IoT DDoS attack
- 1. Krämer, L., Krupp, J., Makita, D., Nishizoe, T., Koide, T., Yoshioka, K., Rossow, C.: "AmpPot: Monitoring and Defending Against Amplification DDoS Attacks." RAID, 2015

Datasets Description 10^{4} 10^{4} # targets (log scale) # entries (log scale) MAN AND A 10³ 10³ 10² 10² JTRS UTRS Amppot Amppot 🔶 Milker 🔶 Milker 10^{1} Oct Feb Dec Jan Mar Apr Oct Dec Jan Feb Mar Nov Nov Apr a) Number of entries per day b) Number of targets per day

a) Number of entries per day

b) Number of targets per day

Dataset	# entries	# targets	# unique	Duration (sec)		
Dataset			target IPs	min	mean	max
UTRS	$533,\!257$	$7,\!820$	$7,\!830$	300.0	$4,\!682.7$	413,700.0
AmpPot	$1,\!616,\!184$	$1,\!080,\!770$	1,080,770	0.5	891.5	$1,\!949,\!571.0$
Milker	$223,\!267$	46,764	$2,\!787,\!522$	1.0	93.0	$3,\!600.0$

Findings: UTRS Dataset

- Highlights:
 - Low usage: minimum 74, mean 3,122, and maximum 9,427 announcements to minimum 74, mean 357, maximum 776 targets per day
 - Sparse coverage: the majority of UTRS announcements (533,255) target individual IP addresses (/32 prefix length), only 2 entries targeted the same /27 subnetwork within the same day
 - Low conversion: only 124 ASes out of 1,300+ UTRS members (around 10%) use this service to advertise IPs
 - Short duration: 21% of all announcements is less than 5 minutes, longest 4 days, 18 hours and 55 minutes

1. Jonker, M., Pras, A., Dainotti, A., Sperotto, A.: "A First Joint Look at DoS Attacks and BGP Blackholing in the Wild." IMC, 2018

Findings: Datasets Intersections

• Low number of intersections with DDoS datasets

Danamatan	UTRS-AmpPot		UTRS-Milker	
	\mathbf{EI}	OI	EI	ΟΙ
# of entries	468	6,774	9	791
# of unique DDoS attack targets	249	1,268	2	143
# of unique UTRS targets	249	1,268	8	163
# of unique UTRS ASNs	25	43	2	6
Mean entries # per UTRS announcement	1.55	1.76	1.12	1.88

Findings: Datasets Intersections

- Low number of intersections with DDoS datasets
- Low number (43 total) of ASNs for which an intersection is found
 - 11 ASNs are from Brasil, 9 from the USA, 7 from Argentina

Daramatar	UTRS-AmpPot		UTRS-Milker	
I al ameter	\mathbf{EI}	OI	\mathbf{EI}	OI
# of entries	468	6,774	9	791
# of unique DDoS attack targets	249	1,268	2	143
# of unique UTRS targets	249	1,268	8	163
# of unique UTRS ASNs	25	43	2	6
Mean entries # per UTRS announcement	1.55	1.76	1.12	1.88

Findings: Datasets Intersections

<u>M</u>

- Low number of intersections with DDoS datasets
- Low number (43 total) of ASNs for which an intersection is found:
 - 11 ASNs are from Brasil, 9 from the USA, 7 from Argentina
- Low percent of DDoS attacks **on the UTRS members** trigger mitigation:
 - 1.03% of AmpPot and 0.06% of Milker for El
 - 8.86% of AmpPot and 6.88% of Milker for OI
- **Globally**, the percentage even lower:
 - 0.025% of AmpPot and 0.001% of Milker for El
 - 0.212% of AmpPot and 0.147% of Milker for OI

Findings: Blackholed Attacks Characterisation

Overall - all AmpPot-recorder attacks on all ASNs triggering at least one mitigation attempt

Blackholed - all AmpPot-recorded attacks for which exact intersection with the UTRS data is found

Conclusions

- UTRS is a free, global, and low-effort-to-join alternative to RTBH
- Takeaways:
 - Around 1% of all ASNs are UTRS members
 - Only 124 ASes out of 1300+ UTRS members (around 10%) use this service to advertise IPs
 - UTRS announced maximum 776 targets per day
 - Only 0.025% of amplification and 0.001% of IoT-botnet-driven attacks are highly likely attempted to be mitigated using UTRS

• Acknowledgements:

- RAPID project (Grant No. CS.007) supported by Dutch Research Council (NWO), the Netherlands
- MITIGATE project (JPJ000254) supported by MIC, Japan
- Commissioned research (No.05201) supported by NICT, Japan
- JSPS KAKENHI Grants (Numbers 21H03444 and 21KK0178)