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We created an Al to...
We applied an algorithm to historical data that generated a model to predict...

Statistics: summarize

Data mining: repeated, automated

Big Analytics"re:

e Vighy Machine learning: feedback

Reasoning
id now

data Deep learning: discover features

i == Science

Databases
need

uncountable

Artificial intelligence: reasoning




What does it take to trust a decision made by a machine?

Apart from accuracy
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Research
Algorithmic fairness is gaining a lot of attention

BRIEF HISTORY Of FAIRNESS IN ML

OH. CRAP.
LOL FAIRNESS!!

_——___-——\-____!_\.____I\_ (Hardt, 2017)
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Of course we do!
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Unwanted bias and algorithmic fairness
Machine learning, by its very nature, is always a form of statistical discrimination
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Areas of concern

 Accountability

Value Alignment

« Explainability
« Fairness
+ User Data Rights



Bias mitigation is hard

We cannot simply drop protected attributes
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Proxies, correlation
Monitoring impossible

Explainability lost



“Fairness does not
mean everyone gets the
same. Falrness means
everyone gets what
they need.”

Rick Riordan
The Red Pyramid, 2010
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Home Demo Resources Community

Al Fairness 360 - Demo
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4. Compare original vs. mitigated results
Dataset: Adult census income
Mitigation: Optimized 'm af

Protected Attribute: Race

Privileged Group: White, Unprivileged Group: Non-white
Accuracy after mitigation changed from 82% to 74%

Bias against unprivileged group was reduced to acceptable levels® for 1 of 2 previously biased metrics

(1 of 5 metrics still indicate bias for unprivileged group)
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IBM AI OpenScale

“As I grow older, 1
pay less attention to

Fraud Detection

. Description Suggests if a claim is fraudulent. Date Created September 1, 2017
\N h i l | m e n S i l I U S | Model Owner Dinesh Kapadila Date Retrained May 5, 2018
L4 Business Owner Camilla Sefior Last Evaluated 1 hour ago

Sun, Aug 26, 2018

watch what they do.”

100% 7:55 AM CDT
FRAUD
90%
80% Car Value
| Es3000 a4%
70%
60% I Policy Active Period o,
%] 40%
: 7] < 2 months
Andrew Carnegie Y so
< 40% Customer Age
1835-1919 = o | e o 57%
b
20% View details
10%
0%
100%
90%
>
Q
= 80%
]
3
x 70%
83 %
60% Accuracy
600
E 431
@ 400 =0 =
@
@
3 200 o
i | Il Il | | el | " |
| I“l ] Inlil I IIIIIlIIIIIIl " L[] |
IBM Developer Ecosystem Group / February 14, 2019 / © 2019 IBM Corporation Thu, Aug 23 Fri, Aug 24 Sat, Aug 25 Sun, Aug 26 Mon, Aug 27

1:55 PM 1:55PM 1:55PM 1:55PM 1:55PM




AIF360:

OpenScale:
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https://aif360.mybluemix.net/
https://www.ibm.com/cloud/watson-openscale/

